The open-source pyGSTi software, maintained by the QPL, implements many techniques and methods introduced by QPL researchers (as well as other industry-standard protocols for assessing quantum computing performance). It is used around the world by experimental and theoretical quantum information scientists to test and characterize many types of quantum computing hardware. An incomplete list of published examples includes:
- M. Geller, Rigorous measurement error correction, arXiv:2002.01471 (2020).
- L. Govia et al., Bootstrapping quantum process tomography via a perturbative ansatz, Nature Comm. 11, 1048 (2020).
- M. Joshi et al., Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions, arXiv:2001.02176 (2020).
- S. Hong et al., Demonstration of a parametrically activated entangling gate protected from flux noise, Phys. Rev. A 101, 012302 (2020).
- T. Proctor et al., Direct randomized benchmarking for multiqubit devices, Phys. Rev. Lett. 123, 030503 (2019).
- K. Rudinger et al., Probing context-dependent errors in quantum processors, Phys. Rev. X. 9, 021045 (2019).
- Y. Chen et al., Detector tomography on IBM quantum computers and migration of an imperfect measurement, Phys. Rev. A 100, 052315 (2019).
- T. Proctor et al., Detecting, tracking and eliminating drift in quantum information processors, arXiv:1907.13608 (2019)
- M. Sarovar et al., Detecting crosstalk errors in quantum information processors, arXiv:1908.09855 (2019)
- T. Scholten et al., Classifying single-qubit noise using machine learning, arXiv:1908.11762 (2019)
- G. A. K. White et al., Performance optimization for drift-robust fidelity improvement of two-qubit gates, Preprint: arXiv:1911.12096 (2019)
- S. Mavadia et al., Experimental quantum verification in the presence of temporally correlated noise, npj Quant. Inf. 4, 7 (2018).
- M. Ware et al., Experimental demonstration of Pauli-frame randomization on a superconducting qubit, arXiv:1803.01818 (2018)
- T. Proctor et al., What randomized benchmarking actually measures, Phys. Rev. Lett. 119, 130502 (2017).
- R. Blume-Kohout et al., Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography, Nature Comm. 14485 (2017)
- M. A. Rol et al., Restless tuneup of high-fidelity qubit gates, Phys. Rev. Applied 7, 041001 (2017).
- K. Rudinger et al., Experimental demonstration of a cheap and accurate phase estimation, Phys. Rev. Lett. 118, 190502 (2017).
- J. P. Dehollain et al., Optimization of a solid-state election spin qubit using gate set tomography, New J. Phys. 18 103018 (2016).